Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1512533.v1

ABSTRACT

Monitoring population protective immunity against SARS-CoV-2 variants is critical for risk assessment. In this serosurveillance study, older adults show much lower seropositive rates of neutralizing antibody (NAb) against ancestral virus than the younger population. The increase in NAb seopositive rate generally follows the population vaccination uptake rate, but older adults have a much lower NAb seropositive rate than vaccination uptake rate. For all age groups, the seropositive rates of NAb against Omicron variant are much lower than those against the ancestral virus. During the fifth wave of COVID-19 in Hong Kong which is dominated by Omicron sublineage BA.2, the case-fatality rate is exceptionally high in the ≥80 year-old age group (9.2%). Our study suggests that the severe BA.2 outbreak in Hong Kong can be attributed by the lack of protective immunity in the population, especially among the vulnerable older adults, and highlights the importance of continual surveillance of protective immunity against emerging variants of SARS-CoV-2.


Subject(s)
COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.26.20113191

ABSTRACT

Objective: Currently available COVID-19 antibody tests using enzyme immunoassay (EIA) or immunochromatographic assay have variable sensitivity and specificity. Here, we developed and evaluated a novel microsphere-based antibody assay (MBA) for the detection of immunoglobulin G (IgG) against SARS-CoV-2 nucleoprotein (NP) and spike protein receptor binding domain (RBD). Method: We developed a microsphere-based assay (MBA) to determine the levels of IgG against SARS-CoV-2 NP and spike RBD. The seropositive cut-off mean fluorescent intensity (MFI) was set using a cohort of 294 anonymous serum specimens collected in 2018. The specificity was assessed using serum specimens collected from organ donors or influenza patients before 2020. Seropositive rate was determined among patients with COVID-19. Time-to-seropositivity and signal-to-cutoff (S/CO) ratio were compared between MBA and EIA. Results: MBA had a specificity of 100% (93/93; 95% confidence interval [CI], 96-100%) for anti-NP IgG and 98.9% (92/93; 95% CI 94.2-100%) for anti-RBD IgG. The MBA seropositive rate for convalescent serum specimens of COVID-19 patients were 89.8% (35/39) for anti-NP IgG and 79.5% (31/39) for anti-RBD IgG. The time-to-seropositivity was shorter with MBA than that of EIA. When compared with EIA, MBA could better differentiate between COVID-19 patients and negative controls with significantly higher S/CO ratio for COVID-19 patients and lower S/CO ratio with negative controls. MBA also had fewer specimens in the equivocal range (S/CO 0.9-1.1) than EIA. Conclusion: MBA is robust and simple, and is suitable for clinical microbiology laboratory for the accurate determination of anti-SARS-CoV-2 antibody for retrospective diagnosis, serosurveillance, and vaccine trials.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.23.056853

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic is a serious threat to global public health, and imposes severe burdens on the entire human society. The severe acute respiratory syndrome (SARS) coronavirus-2 (SARS-CoV-2) can cause severe respiratory illness and death. Currently, there are no specific antiviral drugs that can treat COVID-19. Several vaccines against SARS-CoV-2 are being actively developed by research groups around the world. The surface S (spike) protein and the highly expressed internal N (nucleocapsid) protein of SARS-CoV-2 are widely considered as promising candidates for vaccines. In order to guide the design of an effective vaccine, we need experimental data on these potential epitope candidates. In this study, we mapped the immunodominant (ID) sites of S protein using sera samples collected from recently discharged COVID-19 patients. The SARS-CoV-2 S protein-specific antibody levels in the sera of recovered COVID-19 patients were strongly correlated with the neutralising antibody titres. We used epitope mapping to determine the landscape of ID sites of S protein, which identified nine linearized B cell ID sites. Four out of the nine ID sites were found in the receptor-binding domain (RBD). Further analysis showed that these ID sites are potential high-affinity SARS-CoV-2 antibody binding sites. Peptides containing two out of the nine sites were tested as vaccine candidates against SARS-CoV-2 in a mouse model. We detected epitope-specific antibodies and SARS-CoV-2-neutralising activity in the immunised mice. This study for the first time provides human serological data for the design of vaccines against COVID-19.


Subject(s)
Coronavirus Infections , COVID-19 , Death , Respiratory Insufficiency
SELECTION OF CITATIONS
SEARCH DETAIL